Safety and Biodistribution Study of rAAV2tYF-CB-hRS1 in RS1-deficient Mice
Guo-jie Ye1, Thomas Conlon2, Kirsten Erger2, Peter Sonnentag3, Alok K. Sharma2, Kellie Howard4, Jeffrey D. Chulay1
1AGTC, Alachua, FL; 2The University of Florida, Gainesville, FL, 3Covance Laboratories Inc, Madison, WI, 4Laboratory Corporation of America® Holdings, Seattle, WA

RESULTS

BACKGROUND

X-linked retinoschisis (XLRS) is an early onset retinal degenerative disease and is the leading cause of juvenile macular degeneration in males. Characteristic features include mild to severe loss in central vision, radial streaks arising from foveal schisis, splitting of inner retinal layers in the peripheral retina, and a negative electroretinogram (ERG) arising from a marked reduction in b-wave amplitude.

AGTC is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin (RS1), for treatment of XLRS. Here we report results of a toxicology and biodistribution study of this vector administered by intravitreal injection in RS1-deficient.

METHODS

Male RS1-deficient mice received an intravitreal injection in one eye of vehicle (0.014% Tween 20 in BSS) or rAAV2tYF-CB-hRS1 at one of two dose levels according to the design in Table 1. At two time points, 30 days or 90 days after vector administration, half the animals were sacrificed, of which half were used for toxicology and half were used for biodistribution. In the group scheduled for sacrifice at day 90, an ophthalmic examination was conducted during week 4 and during the week prior to sacrifice. Blood for hematology and clinical chemistry was obtained at sacrifice. Serum for measurement of antibodies to AAV and RS1 was obtained at the 90 day sacrifice. At necropsy, samples of eyes, brain, liver, spleen, heart, lung, kidney, parotid gland and testes were obtained for histopathology and vector biodistribution by qPCR. RS1 expression in ocular tissues was evaluated by immunohistochemistry.

Table 1 Design of toxicology study in RS1-deficient mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Dosage Level</th>
<th>Vector concentration</th>
<th>Volume</th>
<th>Total dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 males</td>
<td>0 (vehicle control)</td>
<td>1µL</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20 males</td>
<td>High dose</td>
<td>1 × 10^12 vg/mL</td>
<td>1µL</td>
<td>1 × 10^9 vg</td>
</tr>
<tr>
<td>3</td>
<td>20 males</td>
<td>Low dose</td>
<td>4 × 10^12 vg/mL</td>
<td>1µL</td>
<td>4 × 10^9 vg</td>
</tr>
</tbody>
</table>

RESULTS

The intravitreal injection procedure was well tolerated in all groups. There were no test-article related effects on food consumption, body weight or mortality. Minimally to mildly higher white blood cell and absolute lymphocyte and monocyte counts at Day 90 in two animals in the low dose vector group were suggestive of mild inflammation. There were no other intergroup differences in hematology or clinical chemistry analyses. Abnormalities on ophthalmic exams were all considered related to the injection procedure or examinations, or congenital or incidental, and were less common at the Day 30 exam than at the Day 30 exam (Table 2).

There were no vector-related gross necropsy observations. Microscopic pathology findings were limited to the eye, with minimal to slight mononuclear cell infiltrates in the injected eyes in both vector-treated groups. At the Day 90 sacrifice there was a decrease in the severity of splitting/disorganization of the inner nuclear layer of the retina in high-dose vector-treated animals. (Table 3).

CONCLUSIONS

Intravitreal administration of rAAV2tYF-CB-hRS1 in RS1-deficient mice was well tolerated with minimal to slight ocular inflammatory cells detected by histopathology. RS1 expression demonstrated by immunohistochemistry was associated with decreased severity of splitting/disorganization of the inner nuclear layer of the retina at the higher dose level. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLR.